Learning Fuzzy Rules using Genetic Programming: Context-free grammar definition for high-dimensionality problems

نویسندگان

  • Francisco José Berlanga
  • María José del Jesus
  • Francisco Herrera
چکیده

The inductive learning of a fuzzy rule-based classification system (FRBCS) with high interpretability is made difficult by the presence of a large number of features that increases the dimensionality of the problem being solved. The difficult comes from the exponential growth of the fuzzy rule search space with the increase in the number of features considered. In this work we tackle this problem, the FRBCS learning with high interpretability for high-dimensionality problems. We propose a genetic-programming-based method, where the evolved disjunctive normal form fuzzy rules compete in order to obtain an FRBCS with high interpretability (few rules and few antecedent conditions per rule) while maintaining a good performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local and global optimization for Takagi-Sugeno fuzzy system by memetic genetic programming

This work presents a method to incorporate standard neuro-fuzzy learning for Takagi–Sugeno fuzzy systems that evolve under a grammar driven genetic programming (GP) framework. This is made possible by introducing heteroglossia in the functional GP nodes, enabling them to switch behavior according to the selected learning stage. A context-free grammar supports the expression of arbitrarily sized...

متن کامل

Learning Probabilistic Tree Grammars for Genetic Programming

Genetic Programming (GP) provides evolutionary methods for problems with tree representations. A recent development in Genetic Algorithms (GAs) has led to principled algorithms called Estimation–of– Distribution Algorithms (EDAs). EDAs identify and exploit structural features of a problem’s structure during optimization. Here, we investigate the use of a specific EDA for GP. We develop a probab...

متن کامل

A Genetic-Programming-Based Approach for the Learning of Compact Fuzzy Rule-Based Classification Systems

In the design of an interpretable fuzzy rule-based classification system (FRBCS) the precision as much as the simplicity of the extracted knowledge must be considered as objectives. In any inductive learning algorithm, when we deal with problems with a large number of features, the exponential growth of the fuzzy rule search space makes the learning process more difficult. Moreover it leads to ...

متن کامل

Learning compact fuzzy rule-based classification systems with genetic programming

The inductive learning of a fuzzy rule-based classification system (FRBCS) with high interpretability is made difficult by the presence of a large number of features that increases the dimensionality of the problem being solved. The difficult comes from the exponential growth of the fuzzy rule search space with the increase in the number of features considered. In this paper we propose a geneti...

متن کامل

Genetic feature selection in a fuzzy rule-based classification system learning process for high-dimensional problems

The inductive learning of a fuzzy rule-based classi®cation system (FRBCS) is made dicult by the presence of a large number of features that increases the dimensionality of the problem being solved. The diculty comes from the exponential growth of the fuzzy rule search space with the increase in the number of features considered in the learning process. In this work, we present a genetic featu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004